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VOLUMES OF SOME SOLIDS WITH SMOOTH SURFACE AREAS

Eva Baranova — Jana Privratska

In this paper, we applied an alternative method to calculate the volume of solids of revolution, if their surfaces are the smooth areas and
these surfaces are described by parametric equations. We also present an example of calculation the volume of toroid, axiod, melonom, elliptic toroid,
axoid (elliptical horn toroid), melonoid (elliptical spindle toroid), ellipsoid and elliptical rings with circular and elliptical cross-section.
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elliptical rings with circular and elliptical cross-section.
1 INTRODUCTION

In many physical problems, we encounter the
necessity to determine the volume of the object (density,
charge density, volume strain, etc.).The volume of solids
in the Euclidean three-dimensional space is usually
calculated using multiple integrals. Some simplification is
achieved in the case of solids of revolution.

That problem of parametric descriptions of the
surface areas of solids is investigated as a problem in the
topological sense [3], [4]. The formula for the calculation
of the volume of n-dimensional solids in the space E, is
proved in the papers [1] and [2] for the case that the
surface areas are the smooth areas (respective smooth by
parts) in a Euclidean space of the corresponding
dimensions.

2 VOLUME OF SOLIDS OF REVOLUTION

Firstly, let us formulate the problem in general:
Let

X =[x,,%,, %, |be points and its Cartesian co-ordinates
inE;,

U =[u,,u, ] the Cartesian coordinates of a point U € E,,
Q the bounded closed domain in E,,

x(u,,u,) i=123, given functions defined on some
domainOcE,, QcO.

Let us also suppose that
o the vector x(u) function has almost everywhere in Q
. . A o O
the continuous partial derivatives B; :6—' for
u .
]
=123 j=12;

e the rank of the matrix (B; )M is equal to 2 almost

everywhere in Q ;

o thesubset P°={xeE,x=x(u)ucintQ}
of the set P = {x e E;lx = x(u) u eintQ} is
homeomorphic range of the set intQ inE,.

Then, we can consider the closure W of the set
P, which is called the 3-dimensional solid in the
space E,, is the boundary of it. The volume xW of the

3-dimensional solid W can be calculated by the formula,
[1] and [2]
uW =V :1.|.J‘|A(u)|du1du2 1)
3 Q
where

X (U) X, (U) X3 (u
Alu)=| Bf B2 B! )
B, B, B

In the case of solids of revolution, we can use the
following parameterization (U1 =u, uz=V)

x, = f(u)cosv

x, = f(u)sinv ve(0,27),ue(ab) 3)
X3 =g(u).
Then
f(u)cosv  f(u)sinv g(u)
Alu)=|f'(u)cosv  f'(u)sinv g'(u)=
—f(u)sinv  f(u)cosv 0

(4)

and the formula for calculating the volume is simplified
into the relationship

2z

1
vzgj

0

dv}|A(u) du = %ThA(u] du. (5)

3 VOLUME OF TOROID
3.1 Volume of toroid

A torus is a surface of revolution generated by
revolving a circle in E, about an axis that is coplanar
with the circle (Fig. 1) and has no common point with it.

Using the symmetry of the toroid (Fig. 2),
we can calculate the volume of only that part which
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lies above the plane(xy). Parametric equations of the
semi-surface are

x, = f(u)cosv=ucosv

x, = f(u)sinv=usinv ve(027),ue(R-r,R+r)

X, =g(u)=r2 —(u-R)? (6)
where r denotes the radius of the rotating circle k(S;r)

and R)r is the distance of the centre S =[R;0;0] from
the z-axis of rotation.

<

Figure 1: Part of torus

Figure 2: Toroid

In this particular case, the formula (4) takes the form

Aw)=ufr?—fu-r +LU-R) ™)

and the volume of a toroid is

27[ r+R
V= 2? J!A(u)du =

r—

47| 3Rr? R (R? R i
el APV P A LA rz—(u—R)2 =
3 2 r 2

=27°Rr? (8)
3.2 Volume of axoid

An axoid (horn toroid) is generated by revolving
acircle in E3 about an axis that is a tangent to the circle,
(Fig. 3). If the circle rotates about the z-axis then the
parametric equations of the semi-surface are

x, = f(u)cosv=ucosv

x, = f(u)sinv=usinv ve(0,27),ue(0,2r)

Xy =g(u)=yr* —(u-r)y Q)

Then

2
Alu)=uyrz —(u-r)? +M (10)
Jri—(u-ry

and the volume of an axoid (Fig. 4) is

V= 22—”T|A(uldu =

3 0
3 2 2r

_4—”|:3Larcsm u_—r_[SL_r_uJ r2—(u- r)z} =

3 2 .

= 27%r (11)

Figure 3: Part of axoid surface (horn torus)

Figure 4: Axoid (horn toroid)
3.3 Volume of melonoid

A melonoid (Fig. 5) is a surface in E; generated

by revolving a circle about an axis when this axis is a
chord of the circle.

Using the same parametric equations as in the
previous cases, the calculation of the volume of
a melonoid (Fig. 6) must be carried out in two steps:

a) volume V, determined by the "outer” surface,
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(12) V= % zr? (15)

2
B er(%+arcsin E)—[R?+ rz]\/rz —RZ}
r

4 VOLUME OF ELLIPTICAL TOROID

An elliptical torus is a surface of revolution
generated by revolving an ellipse in E, about an axis that
is coplanar with the circle (Fig. 7) and has no common
point with it.

Using the symmetry of the elliptical toroid (Fig. 8),
we can calculate the volume of only that part which lies
above the plane (xy). Parametric equations of the semi-
surface are

Figure 5: Part of melonoid surface (spindle torus)
= f(u)cosv=ucosv

= f(u)sinv=usinv ve(0,2z),ue(R-a R+a)

~gt)=2r* ~(u-RY (16

where a,b denote the semi-axes of the rotating ellipse
=(S;a,b) and R)a is the distance of the centre
S =[R,0,0] from the z-axis of rotation.

Figure 6: Melonoid (Spindle toroid) [

b) volume V, determinated by the inner “surface"

_2— j|A

Az

Srreaesin=R_[R_ 2 RU r? —(u-R)
32 r 2 2

Figure 7: Part of elliptical torus

3|2

2
_4r {3 Rr (E—arcsin Ej—(%+ rz]\/r2 - RZ}
r

(13)

The volume of the "hollow" body is the
difference between these two volumes, i.e.

V =V, -V, =4zRr? arcsin? (14)

3.4 Volume of sphere
Figure 8: Elliptical toroid

A sphere can be considered as a degenerate case
of a toroid when the axis of rotation is a diameter of the

(12) forR =0, i.e.
b . 7 u*(u-R)
Alu)=—|uyr* =U-R)" + —=— 17)
(W)= et —-R) e
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and the volume of an elliptical toroid is

R+a
V= 22—”9 j|A u)du =

3a
=27°Ra’b

4.1 Volume of elliptical axoid

An elliptical axoid (elliptical horn torus) is
generated by revolving an ellipse in E, about an axis that
is a tangent to the circle, (Fig. 9). If the circle rotates
about the z-axis then the parametric equations of the
semi-surface are

= f(u)cosv=ucosv

x, = f(u)sinv=usinv €(0,27),u(0,2r)

a’—(u-a)’ (19)

X3 = g(u)=g

Figure 9: Part of elliptical axoid surface

Figure 10: Elliptical axoid

2
_A] 3 pasarcsin LR [ R, g2 _RY a’—(u-R)
2 a 2

. u*(u-a)
Jai—(u-a)f ] 0

angkthe volume of an elliptical axoid (Fig. 10) is

=27%a’

4.2 Volume of elliptical melonoid

An elliptical melonoid (Fig. 11) is a surface in
E, generated by revolving an ellipse about an axis when
this axis is a chord of the ellipse.

Using the same parametric equations as in
previous cases, the calculation of the volume of
a melonoid (Fig. 12) must be carried out in two steps:

a) volume V, determined by the "outer" surface,

Figure 11: Part of elliptical melonoid surface
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Figure 12: Elliptical melonoid
b) volume V, is determined by the inner “surface"
22—”E I Au)

2 0
_ 41 8 paz aresin =R (R, 2 _RU a?—(u-RY
R E a 2 2 aa

47Zb 3 R R? 2 2
~Ra? ——arcsm —| —+a a“—
3a 2 2 a 2

(23)

The volume of the "hollow" body is the difference
between these two volumes, i.e.

V =V, -V, =4zRabarcsin g (24)

4.3 Volume of an ellipsoid

An ellipsoid can be considered as a degenerate
case of an elliptical toroid when the axis of rotation is
a minor semi-axis of the rotating ellipse. That is why its
volume is given by formula (22) forR=0, i.e.

v =g7za2b (25)

5 VOLUME OF ELLIPTICAL RINGS

5.1 Volume of elliptical ring with elliptical cross-
section

An elliptical ring with an elliptical cross-section
is a surface formed by moving an ellipse e(S,c,d) in an

elliptical orbit &(O,a,b) that is perpendicular to the
plane of the ellipse e (Fig. 13 and Fig.14).

Figure 13: Part of elliptical ring surface
with elliptical cross-section

Figure 14: Elliptical ring with elliptical cross-section

Parametric equations of the surface are
x, =(a+coosv)cosu
=(b+ccosv)sinu

ue <0,2ﬂ'>,

(26)

X3 =dsinv, €(0,27)

where aandb denote the semi-axes of the trajectory of
the moving ellipse e(S,c,d). We suppose that the

surface is not intersecting, i.e. min(a,b)>c.

In this particular case, the general formula (2) takes
the form

(a+ccosv)cosu (b+ccosv)sinu dsinv
—(a+ccosv)sinu (b+ccosv)cosu 0 |=
d cosv,

Alu,v)=

—csinvcosu —csinvsinu

=abc cos v +od(a+b)cos® v+acd sin? usin® v+

+c2dsin? veos v+bed sin? veos? u (27)
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and the volume of the ring is equal to

127;27r
V=2 [|A(u)dudv =
300

1%¢ 201024 cin2
=3 [ [ufabccosv+cd (a+b)cos” v+cd sin® veosv}+
0

sin2u sin2u

+%cd sin® v{a(u — )+b(u+ )i

127 2., 202
=3 | [2{abccosv+cd (a+b)cos” v+c“d sin® veosv}+
0

+rcd sin® v(a+b)]dv =

sin2v

=%[27z{abcsinv+cd (a+b)%(v )+ 02d sind v+

sin2v (28)

+%ncd(a+b)(v— )I§" = (a+b)cd?

5.2 Volume of elliptical ring with circular cross-
sections

An elliptical ring with a circular cross-section is a
surface formed by moving a circle k(S; r) in an elliptical

orbit that is perpendicular to the circle k (Fig. 15 and 16).

Figure 15: Part of elliptical ring surface
with circular cross-section

Figure 16: Elliptical ring with circular cross-section

As a circle k(S;r) can be taken as a special case of an
ellipse if c=d =r, we can use the previous results, i.e.

(a+rcosv)cosu (b+rcosv)sinu rsinv
—(a+rcosv)sinu (b+rcosvjcosu 0 |=

—rsinvcosu

Alu,v)=

—rsinvsinu r cosv

=abrcosv+r?(a+b)cos® v+ar?sin® usin’v+

+r¥sin®veosv+br?sin? veos? u (29)
and the volume is equal to

—1 T dudv = b)r’z? 30

_§-!-(‘; u)|dudv = (a+b)riz (30)

5 CONCLUSION

General alternative method of calculating the
volume of solids is dependent on finding a suitable
parameterization of their surfaces. In the case of solids of
revolution, the problem is somewhat easier, because it is
necessary only to find a parameterization of the curve,
which is the plane section of the solid by a plane
containing the axis of rotation.
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