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VOLUMES OF SOME SOLIDS WITH SMOOTH SURFACE AREAS 
 

Eva Baranová – Jana Přívratská 

 

 
In this paper, we applied an alternative method to calculate the volume of solids of revolution, if their surfaces are the smooth areas and 

these surfaces are described by parametric equations. We also present an example of calculation the volume of toroid, axiod, melonom, elliptic toroid, 

axoid (elliptical horn toroid), melonoid (elliptical spindle toroid), ellipsoid and elliptical rings with circular and elliptical cross-section. 
K e y w o r d s: volume, solids of revolution, toroid, axiod, melonom, elliptic toroid, elliptical axoid, elliptical melonoid, ellipsoid, 

elliptical rings with circular and elliptical cross-section. 
 

1 INTRODUCTION 

 

In many physical problems, we encounter the 

necessity to determine the volume of the object (density, 

charge density, volume strain, etc.).The volume of solids 

in the Euclidean three-dimensional space is usually 

calculated using multiple integrals. Some simplification is 

achieved in the case of solids of revolution.  

That problem of parametric descriptions of the 

surface areas of solids is investigated as a problem in the 

topological sense [3], [4]. The formula for the calculation 

of the volume of n-dimensional solids in the space En is 

proved in the papers [1] and [2] for the case that the 

surface areas are the smooth areas (respective smooth by 

parts) in a Euclidean space of the corresponding 

dimensions. 

 

 

2 VOLUME OF SOLIDS OF REVOLUTION 

 

Firstly, let us formulate the problem in general: 

Let  

 321 ,, xxxX  be points and its Cartesian co-ordinates 

in 3E , 

 21 ,uuU   the Cartesian coordinates of a point 2EU  , 

 the bounded closed domain in 2E , 

  3,2,1,, 21 iuuxi , given functions defined on some 

domain OEO  ,2 . 

 

Let us also suppose that 

 the vector  ux  function has almost everywhere in   

the continuous partial derivatives 
j

ii

j
u

x
B




  for 

2,1,3,2,1  ji ; 

 the rank of the matrix   
23x

i

jB  is equal to 2 almost 

everywhere in  ; 

 the subset     int,3

0
uuxxx EP  

 of  the set    int,3 uuxxx EP  is  

homeomorphic range of the set int  in 3E . 

 

Then, we can consider the closure W  of the set 

P , which is called the 3-dimensional solid in the 

space 3E , is the boundary of it. The volume W of the  

3-dimensional solid W  can be calculated by the formula, 

[1] and [2] 
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In the case of solids of revolution, we can use the 

following parameterization (u1  = u, u2 = v)  

 

         vufx cos1    

         vufx sin2   2,0v , bau ,     (3) 

        ugx 3 . 

 

Then 
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and the formula for calculating the volume is simplified 

into  the relationship 
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3 VOLUME OF TOROID 

 

3.1 Volume of toroid 

 

A torus is a surface of revolution generated by 

revolving a circle in 3E  about an axis that is coplanar 

with the circle (Fig. 1) and has no common point with it.  

Using the symmetry of the toroid (Fig. 2),        

we can calculate the volume of only that part which       
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lies above the plane  xy . Parametric equations of the 

semi-surface are  

 

       vuvufx coscos1   

       vuvufx sinsin2     rRrRuv  ,,2,0   

        22

3 Rurugx                                         (6) 

 

where r  denotes the radius of the rotating circle  rSk ;  

and rR   is the distance of the centre  0;0;RS   from 

the z-axis of rotation. 

 
Figure 1: Part of torus 

 

 
Figure 2: Toroid 

 

In this particular case, the formula (4) takes the form 

 

         
 

 22

2
22

Rur

Ruu
Ruruu




                 (7) 

 

and the volume of a toroid is  
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222 Rr                                                                        (8) 

 

3.2 Volume of axoid 

 

An axoid (horn toroid) is generated by revolving 

a circle in 3E  about an axis that is a tangent to the circle, 

(Fig. 3). If the circle rotates about the z-axis then the 

parametric equations of the semi-surface are  

  vuvufx coscos1   
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and the volume of an axoid (Fig. 4) is  
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Figure 3: Part of axoid surface (horn torus) 

 

 
 

Figure 4: Axoid (horn toroid) 

 

3.3 Volume of melonoid 

 

A melonoid (Fig. 5) is a surface in 3E  generated 

by revolving a circle about an axis when this axis is a 

chord of the circle.  

Using the same parametric equations as in the 

previous cases, the calculation of the volume of 

a melonoid (Fig. 6) must be carried out in two steps: 

 

a) volume  0V  determined by the "outer" surface,  
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  Figure 5: Part of melonoid surface (spindle torus) 

 

 
Figure 6: Melonoid (Spindle toroid) 

 

b) volume 1V  determinated by the inner "surface" 
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                                                                                      (13) 

The volume of the "hollow" body is the 

difference between these two volumes, i.e. 

r

R
rRVVV arcsin4 2

10                    (14)      

 

3.4 Volume of  sphere 

 

A sphere can be considered as a degenerate case 

of a toroid when the axis of rotation is a diameter of the 

rotating circle. That is why its volume is given by formula 

(12) for 0R , i.e. 
 

3

3

4
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4 VOLUME OF ELLIPTICAL TOROID 

 

An elliptical torus is a surface of revolution 

generated by revolving an ellipse in 3E  about an axis that 

is coplanar with the circle (Fig. 7) and has no common 

point with it. 

Using the symmetry of the elliptical toroid (Fig. 8), 

we can calculate the volume of only that part which lies 

above the plane  xy . Parametric equations of the semi-

surface are  

       vuvufx coscos1   

       vuvufx sinsin2    aRaRuv  ,,2,0   

        22

3 Rur
a

b
ugx                                   (16)      

 

where ba,  denote the semi-axes of the rotating ellipse 

 baSe ,;  and aR   is the distance of the centre 

 0,0,RS   from the z-axis of rotation. 

 

 
Figure 7: Part of elliptical torus 

 

 

Figure 8: Elliptical toroid 

 

In this particular case, the formula (4) takes the form 
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and the volume of an elliptical toroid is  
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4.1 Volume of  elliptical axoid 

 

An elliptical axoid (elliptical horn torus) is 

generated by revolving an ellipse in 3E  about an axis that 

is a tangent to the circle, (Fig. 9). If the circle rotates 

about the z-axis then the parametric equations of the 

semi-surface are  

 

       vuvufx coscos1   

       vuvufx sinsin2              ruv 2,0,2,0    

        22

3 aua
a

b
ugx                                    (19)  

  

 
Figure 9: Part of elliptical axoid surface 

 

 
 

Figure 10: Elliptical axoid 

 

 

 

 

Then 

       
 

  


















22

2
22

aua

auu
auau

a

b
u           (20) 

and the volume of an elliptical axoid (Fig. 10) is  
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4.2 Volume of elliptical melonoid 

 

An elliptical melonoid (Fig. 11) is a surface in 

3E  generated by revolving an ellipse about an axis when 

this axis is a chord of the ellipse.  

Using the same parametric equations as in 

previous cases, the calculation of the volume of 

a melonoid (Fig. 12) must be carried out in two steps: 

 

a) volume 0V  determined by the "outer" surface,  
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Figure 11: Part of elliptical melonoid surface 
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  Figure 12: Elliptical melonoid 

 

b) volume 1V  is determined by the inner "surface" 
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                                                                                      (23) 

The volume of the "hollow" body is the difference 

between these two volumes, i.e. 

a

R
RabVVV arcsin410                          (24) 

 

4.3 Volume of an ellipsoid 

 

An ellipsoid can be considered as a degenerate 

case of an elliptical toroid when the axis of rotation is 

a minor semi-axis of the rotating ellipse. That is why its 

volume is given by formula (22) for 0R , i.e. 
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5 VOLUME OF ELLIPTICAL RINGS  

 

5.1 Volume of elliptical ring with elliptical cross-

section 

An elliptical ring with an elliptical cross-section 

is a surface formed by moving an ellipse  dcSe ,,  in an 

elliptical orbit  , ,e O a b  that is perpendicular to the 

plane of the ellipse e (Fig. 13 and Fig.14). 

 

 

  

 

 

Figure 13: Part of elliptical ring  surface  

with elliptical cross-section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Elliptical ring with elliptical cross-section 

 

Parametric equations of the surface are  

         uvcax coscos1    

         uvcbx sincos2                                             (26) 

       3 sinx d v ,    2,0,2,0  vu   

                                             

where anda b  denote the semi-axes of the trajectory of  

the moving ellipse  , ,e S c d . We suppose that the 

surface is not intersecting, i.e.   cba ,min . 

In this particular case, the general formula (2) takes 

the form 
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and the volume of the ring is equal to  
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5.2 Volume of elliptical ring with circular cross-

sections 

An elliptical ring with a circular cross-section is a 

surface formed by moving a circle  rSk ;  in an elliptical 

orbit that is perpendicular to the circle k (Fig. 15 and 16).  

 
 

Figure 15: Part of elliptical ring surface  

with circular cross-section 

 
 

Figure 16: Elliptical ring with circular cross-section 

 

As a circle  rSk ;  can be taken as a special case of an 

ellipse if rdc  , we can use the previous results, i.e.  
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and the volume is equal to 
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5 CONCLUSION 

 

General alternative method of calculating the 

volume of solids  is dependent on finding a suitable 

parameterization of their surfaces. In the case of solids of 

revolution, the problem is somewhat easier, because it is 

necessary only to find a parameterization of the curve, 

which is the plane section of the solid by a plane 

containing the axis of rotation. 
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