
                                                             Volume XXVII, 52 – No.1, 2025, DOI: 10.35116/aa.2025.0006  
                                                                                        

ISSN 1339-9853 (online) http://acta-avionica.tuke.sk ISSN 1335-9479 (print) 

PREDICTION OF HAZARDOUS WEATHER PHENOMENA USING 

ARTIFICIAL INTELLIGENCE 
 
Ladislav CHOMA*, Martin KELEMEN Jr., Matej ANTOŠKO, Kristína OZDINCOVÁ, Jozef 
SABO 
Technical University of Kosice, 04121, Rampova 7, Kosice, Slovak republic  
*Corresponding author. E-mail: ladislav.choma@tuke.sk 
 

Abstract. The prediction of hazardous weather phenomena is a critical component in ensuring the 
safety and efficiency of air transport operations. This paper focuses on evaluating the potential of 
artificial intelligence (AI) in forecasting fog—one of the most significant weather conditions affecting 
airport visibility. The methodological framework combines empirical methods (observation, 
measurement, experimentation) with theoretical approaches (analysis, synthesis, modeling). Emphasis 
is placed on the application of machine learning and deep learning techniques for processing 
meteorological data collected from Sliac military airport. The study compares conventional numerical 
weather prediction models (e.g., WRF) with AI-based approaches such as Support Vector Machines 
(SVM), Long Short-Term Memory (LSTM) neural networks, and ensemble models. Results indicate 
that AI models achieve higher accuracy in short-term fog prediction while reducing computational 
requirements. Experiments demonstrated success rates of up to 90% using ensemble techniques. The 
findings confirm that AI represents a promising tool for developing modern predictive meteorological 
systems in aviation. Challenges identified include limited data availability, the need for high-quality 
datasets, and the complexity of model interpretation. Future work should include expanding the data 
scope to multiple airports and incorporating satellite and radar data. The proposed approach offers a 
strong foundation for the advancement of intelligent, automated decision-support systems in both civil 
and military aviation meteorology. 
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1. INTRODUCTION 
 

   Weather forecasting has played a vital role in human development throughout history. Since ancient 
times, people's daily lives and economic activities have been closely tied to weather changes. Even under 
favorable weather conditions, forecasting helped in planning agricultural and outdoor activities. Over 
time, technological progress has enabled more accurate predictions, particularly through the 
development of various meteorological models. Today, such models are crucial for anticipating weather 
conditions that may threaten the safety of air traffic. As air transport represents an essential element of 
global connectivity, operating across long distances, forecasting not only current but also future 
atmospheric conditions along flight routes is necessary. Unfavorable weather and sudden hazardous 
events can lead to aviation accidents. 
   With the advancement of aviation, the need for accurate meteorological support has increased. The 
role of aviation meteorology is to provide early warnings of dangerous weather conditions to ensure 
flight safety. For example, Haoxing Liu and his team applied support vector machine (SVM) models to 
forecast hazardous weather events such as thunderstorms and turbulence. SVM, a supervised machine 
learning technique, classifies complex datasets by identifying optimal decision boundaries in high-
dimensional spaces. They utilized a radial basis function kernel to handle non-linear patterns and trained 
their models using historical data such as temperature, humidity, and wind parameters [1]. Similarly, I. 
Winnicki and his team presented the integration of mesoscale models with remote sensing data, creating 
software that visualizes outputs from COAMPS, MSG satellite imagery, and radar. Their module 
determines atmospheric vertical profiles to assess in-flight weather conditions, including cloud base, 
visibility, turbulence, precipitation, and icing [2]. Jaedong Lee and Jee-Hyong Lee proposed an efficient 
method for building localized hazardous weather forecast models based on historical data [3]. Ilan 
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Price’s team introduced GenCast, a probabilistic AI-based weather model trained on long-term 
reanalysis datasets, offering improved speed and performance. Their work contributes to the evolution 
of operational forecasting systems [4]. Jimeng Shi and collaborators reviewed modern deep learning 
methods for weather prediction, offering a taxonomy based on training strategies such as deterministic 
prediction, probabilistic generation, and fine-tuning of pretrained models [5]. Research by Skultéty Filip 
et al., focused on the growing frequency of thunderstorms and their effect on en-route flight delays 
across Europe. Using data from 2013 to 2019 provided by the Performance Review Unit, they observed 
that weather-related delays are rising, which could negatively impact both air traffic operations and the 
aviation economy [6]. Shankar Anand and colleagues emphasized the critical role of precise fog 
forecasting in airport operations. They developed a machine learning-based early warning system, 
trained on synoptic data from 2014–2020 and tested with 2021–2022 data. Their analysis showed that 
distributed random forest and deep learning models performed best for fog prediction at Patna Airport 
[7]. In another study, Ristiana Dewi and her team tackled the inherently chaotic and complex nature of 
fog forecasting using artificial intelligence. By analyzing six-hour synoptic data from Wamena Airport, 
they achieved a 90% prediction accuracy using a Stacked Ensemble model for fog events occurring 1–
3 hours ahead [8]. Likewise, Castillo-Botón and colleagues conducted a comprehensive evaluation of 
regression and classification methods for fog and low cloud forecasting. Their results highlight the most 
suitable machine learning approaches for predicting these critical weather phenomena [9]. 
 
2. MATERIALS AND METHODS 

  
   Accurate forecasting of hazardous weather conditions is a fundamental aspect of ensuring safety in air 
transport. Among such phenomena, fog presents a particular challenge due to its significant impact on 
airport visibility, often leading to delays or cancellations. Developing effective fog prediction models 
requires the use of various scientific methodologies capable of analyzing meteorological data and 
producing reliable forecasts. This chapter presents a structured research methodology focused on fog 
prediction, beginning with the application of empirical methods—observation, measurement, and 
experimentation—which are essential for data acquisition. It then discusses theoretical methods such as 
analysis, synthesis, deduction, induction, and modeling, which are crucial for processing and 
interpreting meteorological data to achieve high-accuracy predictions. 
Empirical methods form the basis of scientific inquiry by facilitating the collection and examination of 
input data relevant to fog formation. These include: 
 

 Observation, which plays a central role in identifying recurring weather patterns conducive to 
fog. Long-term atmospheric monitoring at airports helps in detecting trends, with data sourced 
from ground stations measuring visibility, temperature, humidity, and pressure (WMO 
standards) [10], hourly SYNOP reports [11], satellite imagery for cloud and moisture 
distribution [12], and radar or lidar systems for tracking fog particle density at different altitudes 
[13]. 

 Measurement, which quantifies key physical variables influencing fog development. Tools 
include automated weather stations for basic meteorological parameters, ceilometers and 
transmissometers for cloud base and fog density, micrometeorological instruments for tracking 
humidity and temperature gradients, and satellite systems for mapping fog over large areas [14]. 

 Experimentation, which enables hypothesis testing in controlled settings. This includes 
laboratory creation of fog (physical experiments) or computer-based simulations using 
numerical models like WRF to replicate fog-forming atmospheric processes [13,14].  

 
   Beyond empirical data, theoretical methods are vital for interpreting the complex dynamics of fog 
formation: 

 Analysis decomposes meteorological systems into influencing variables. Techniques include 
statistical correlations between weather parameters and fog, machine learning to detect latent 
patterns, and time series analysis of historical fog events [12,13,14]. Synthesis then integrates 
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these findings into comprehensive models by combining multiple meteorological indicators into 
a unified predictive framework [13]. 

 Deduction allows general rules to be established based on physical principles. For instance, fog 
is likely when the temperature–dew point spread is below 2°C, cloud cover is less than 3/8, wind 
speeds remain under 5 m/s, there is no precipitation, and air temperature is above −5°C [15]. 

 Induction involves forming hypotheses from patterns in historical data, such as higher fog 
probability during calm winds and high humidity, which can inform model training [14]. 

 
   Modeling serves as a central pillar in fog prediction. There are several modeling strategies [13,14,16]: 

 Statistical models leveraging regression techniques and historical data; 
 Machine learning models using neural networks, decision trees, or support vector machines; 
 Numerical weather models that simulate atmospheric processes based on physical laws. 

   Each modeling approach offers unique strengths. Numerical models provide detailed physical 
simulations, while statistical and AI-based methods allow rapid analysis of large datasets. A hybrid 
approach that integrates these methods delivers optimal results, enhancing the reliability and accuracy 
of fog forecasting systems [13]. 
 
3. AI BASED DATA PROCESSING AND EXPERIMENTAL DESIGN 
 

Forecasting fog remains a challenging task due to the number of complex and interacting 
meteorological factors involved in its formation. The integration of artificial intelligence (AI) into 
forecasting processes provides a robust quantitative framework, combining modeling, big data analytics, 
and experimental validation. These methods emphasize the systematic collection and transformation of 
meteorological data, which are further processed using statistical and mathematical models to support 
accurate predictions. AI can be particularly effective within the following methodological areas: 
 

 Modeling and simulations, enabling the development of dynamic forecasting systems using 
historical data; 

 Big data analysis, which helps to efficiently process large meteorological datasets and determine 
the most influential variables affecting fog formation;  

 Simulation-based experimentation, allowing the testing of model performance in realistic, data-
driven scenarios [17, 18, 19]. 

The core of this methodology is grounded in the acquisition and processing of empirical 
meteorological data. In this study, minute-resolution data from the Sliac military airport will be used. 
With 1,440 data points per day, this dataset provides detailed weather information. The data are stored 
in CSV format and archived by the Meteorological Centre in Zvolen, making them accessible for 
machine learning analysis. 

 
Figure 1 - The Algorithmic Pathway to AI-Driven Fog Prediction 
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The entire preprocessing workflow is illustrated in Figure 1, which summarizes the transformation of 
raw data into a form suitable for AI models, particularly Long Short-Term Memory (LSTM) neural 
networks [20, 21]. The steps include: 

 Data normalization, ensuring uniform data scaling; 
 Feature selection, identifying the most relevant variables (temperature, humidity, wind speed); 
 Time-series creation, structuring the data for sequential input to LSTM networks. 

To validate the AI models, experimental simulations will compare their predictions against those 
generated by traditional numerical methods. The central hypothesis assumes that AI-based models will 
achieve greater accuracy. For this purpose, the dataset will be split using a standard 80:20 ratio for 
training and testing [22], enabling consistent performance evaluation and objective model comparison. 
 
4. PREDICTION OF FOG AND HAZARDOUS WEATHER PHENOMENA 
 
In the field of prediction of dangerous weather phenomena, and fog in particular, several research 
approaches differ in methodology, data requirements and computational complexity. This chapter aims 
to analyse the current methods used in this area and compare their strengths and weaknesses with an 
emphasis on their applicability in aviation. 
 
  4.1 Traditional numerical models 
   Numerical meteorological models such as WRF (Weather Research and Forecasting) or COAMPS 
use physical equations to simulate the evolution of the atmosphere. They are the basis of most 
operational prediction systems because they enable simulation on different temporal and spatial scales. 
However, despite their stability and physical interpretability, these models are computationally 
demanding and often cannot accurately predict short-duration local phenomena such as fog, especially 
in the airport area [18]. 
  
  4.2 Machine learning approaches (Machine Learning) 
   Machine learning provides the flexibility to process large volumes of meteorological data and uncover 
patterns that would be difficult to identify in traditional models. Models like Support Vector Machines 
(SVM), Random Forest (RF) and XGBoost can classify the occurrence of fog based on historical data 
with a high degree of accuracy. The advantage is fast implementation and lower computational burden, 
but they require careful selection of input parameters and may have limited generalizability [23, 24]. 
 
 
  4.3 Deep learning and neural networks 
   Deep learning models such as LSTM (Long Short-Term Memory) are designed to process sequential 
data and have proven to be extremely effective in short-term prediction of phenomena such as fog. Their 
ability to remember previous states enables models to capture complex relationships between time-
varying data. However, these models require a large amount of high-quality historical data, and their 
training is more time-consuming [25]. 
  
  4.4 Combined (ensemble) and hybrid models 
   An interesting trend is the so-called ensemble modelling, which combines the outputs of several 
algorithms, increasing the robustness and accuracy of the prediction. For example, Stacked Ensemble 
(SE) uses the advantages of several models (see Figure 2) and reduces the risk of error of one particular 
algorithm. Research by Dewi et al. (2023) shows that such an approach can achieve up to 90% success 
in short-term fog prediction [26]. 
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Figure 2 – Comparison of Machine Learning Models in Aviation 

 
5. DISCUSSION AND RESULTS 
 
   Based on the conducted analysis, the experimental phase of the research would involve testing various 
machine learning models using historical meteorological data from Sliac military airport. The prepared 
dataset, exceeding 500,000 records in CSV format, would allow for easier manipulation due to its 
relatively small file size. These records would comprise minute-level observations of key meteorological 
parameters such as temperature, humidity, wind speed, and visibility. The results obtained would 
effectively highlight the potential of artificial intelligence as a tool to enhance the prediction of 
hazardous meteorological phenomena in aviation. Models like LSTM are particularly well-suited for 
this task, as they can capture complex dependencies between variables and the temporal evolution of 
weather conditions—an area where traditional models often fall short. Despite the anticipated positive 
outcomes, it is important to acknowledge several limitations of this research. One such limitation is the 
exclusive use of data from a single airport, which naturally restricts the generalizability of the findings 
to broader geographical areas. Furthermore, deep learning models require extensive volumes of high-
quality data and substantial computational resources. In the future, it would therefore be beneficial to 
expand the database to include satellite and radar data, and to also apply hybrid approaches that combine 
physical modeling with data-driven techniques. From the perspective of aviation operations, the 
implementation of explainable artificial intelligence (XAI) appears highly promising. Its utilization 
could significantly increase the confidence of dispatchers and meteorologists in automated decision-
support systems. 
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Figure 3 - Comparison of Forecasting models 

 
   Figure 3 presents a comparative evaluation of four forecasting models WRF (Numerical), SVM 
(Machine Learning), LSTM (Deep Learning), and Stacked Ensemble (AI) based on their fog prediction 
accuracy. The WRF model, representing traditional numerical approaches, achieved an accuracy of 
about 60-70%, aligning with findings from Hu et al. (2010). The SVM model improved upon this with 
an 70-80% accuracy, as reported by Liu et al. (2020), highlighting the benefits of machine learning 
techniques in capturing complex patterns. Further enhancement is observed with the LSTM model, 
which attained an 80-90% accuracy, demonstrating the efficacy of deep learning in handling temporal 
dependencies, as noted by Anand et al. (2022). The highest accuracy of 90-100% was achieved by the 
Stacked Ensemble model, corroborating the results of Dewi et al. (2023), and underscoring the 
advantage of combining multiple models to leverage their individual strengths. 
   This progression in accuracy underscores the potential of AI-based models to surpass traditional 
forecasting methods in predicting fog events. The superior performance of the Stacked Ensemble model 
suggests that integrating various algorithms can effectively capture the multifaceted nature of fog 
formation, leading to more reliable forecasts. Such advancements are particularly crucial for 
applications in aviation and transportation, where accurate fog prediction is essential for safety and 
operational efficiency [14, 23, 25, 26]. 
 
5. CONCLUSION 
 
   This study presents a significant contribution to the field of hazardous weather prediction in aviation 
by applying artificial intelligence techniques to fog forecasting—a critical factor impacting airport 
visibility and flight safety. The main benefit of the work lies in the development of a methodological 
framework that combines classical scientific approaches with modern AI-driven solutions. Using high-
resolution meteorological data from Sliač military airport, the study evaluates and compares the 
performance of various models. AI-based methods, especially LSTM neural networks and ensemble 
models, demonstrated superior accuracy—achieving prediction rates of up to 90–100% compared to 
traditional numerical models. These results underscore the potential of AI to enhance the reliability and 
responsiveness of aviation meteorological services. An additional advantage is the ability of AI to 
process large datasets more efficiently, enabling near real-time analysis and prediction. The research 
also identifies practical challenges such as the need for broader data sources, including satellite and 
radar data, and the importance of implementing explainable AI (XAI) for user trust and transparency. 
In summary, this study lays the groundwork for the future development of intelligent, data-driven 
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forecasting systems in aviation meteorology. The proposed methodology can be effectively applied to 
both civil and military contexts, contributing to increased flight safety, efficiency, and automation in 
operational decision-making 
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