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In this article is mentioned process, mathematical apparatus and graphical results of the state variable prediction simulation using Kalman 

filter, which is programmed in C++ platform. The content of this article is the tracker modelling using six state Kalman filter, which is based on the 

mentioned parts of the system model. The processes and the results demonstrate application of the algorithm in C++ platform, processing of the 
generated values of the state estimations and abilities of the deficiencies limitation on this modelling level. The algorithm change makes this process 

applicable for real dynamic systems in the terms of using real sensors.     
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1 INTRODUCTION 

 

Mathematical and statistical processing of the 

signals and measurement results belongs to operations 

determining quality, information value and applicability 

of the obtained information. In the terms of dynamic 

processes is necessary to choose procedures, which are 

able to process results and generate values with required 

precision in the real time application. These results are 

then useable in the terms of control, statistical processing 

or the state prediction. The last field of application widely 

uses Kalman filtering for estimation of the state variables 

in discrete or continuous time, which differs depending on 

the mathematical description of the dynamic system and 

particular parts of the used mathematical apparatus. The 

characteristics, which predetermine this mathematical 

approach for most of the real time applications are wide 

ability of the mathematical application, implementation to 

programmes, ability of the complex statistical description 

of solved issue and ability of assembling to more complex 

systems through special (cascade) or integration 

architecture. The content of this article is estimation of the 

chosen state values using known equations, which creates 

the substance of Kalman filtering. For the simulation is 

used generating of the random numbers in the C++ 

platform in consideration of simulation level. The 

simulation consists of the predefined matrices and 

necessity of the noise simulation to influence values, 

which determine the system state.    

 

 

2 DEFINITION OF PREDICTION ALGORITHM 

 

 The content of prediction are range of the 

vehicle and bearing of the vehicle in discrete time. These 

are defined on the basis of matrices, which define the 

system state description of the tracker. The concrete 

matrices for this problem are shown in [1.]. 

The basic mathematical apparatus of tracker, 

which will be used for software solution is set of the 

equations in discrete time space. These equations will be 

used by prediction algorithm. Definition of the discrete 

dynamic model equation (1.) and equation of the 

measurement model (2.) is as follows: 

 

 

𝑥𝑘 = Φ𝑘−1𝑥𝑘−1 + 𝑤𝑘−1                                 (1.) 

 

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘                                             (2.) 

 

In the equation (1.) Φ represents dynamic 

coefficient matrix, H in equation (2.) represents 

measurement sensitivity matrix, x defines the state vector 

and y is the measurement vector. In the equations are also 

included noises. In the equation (1.) w represents the 

process noise and in the equation (2.) represents v the 

measurement noise. Index k is an expression of the 

discrete time index.  

The prediction based on recursive approach of 

Kalman filtering uses next set of the equations. The 

function of these equations can be written as cyclical 

prediction and correction of the state variables. The 

definitions of these equations are as follows: 

 

�̂�𝑘,𝑘−1 =  Φ𝑘−1�̂�𝑘−1                                         (3.) 

 

𝑃𝑘,𝑘−1 =  Φ𝑘−1𝑃𝑘−1Φ𝑘−1
 𝑇 + 𝑄𝑘−1                  (4.) 

 

𝐾𝑘 = 𝑃𝑘,𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘,𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1

           (5.) 

 

�̂�𝑘 = �̂�𝑘,𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘 �̂�𝑘,𝑘−1)               (6.) 

 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘,𝑘−1                                  (7.) 

 

In the prediction equations (3.) and (4.) is 

measured prediction of the state vector and prediction of 

the covariance matrix P. In the equation (4.) represent Q 

matrix of the process noise covariance. Equations of the 

correction are summarized in (5.), (6.) and (7.). Kalman 

gain equation (5.), which is weighting measurements in 

the equation (6.), contains except another defined 

parameters also matrix R. This matrix is defined as matrix 

of the measurement noise covariance. The equation (6.) is 

correction of the state vector in defined iteration and the 

equation (7.) is mathematical expression of the covariance 

matrix correction.  

Accurate description of the principle is defined 

in [1] and [2]. The differences in comparison with general 

equation form are changes in equations (1.) and (7.), 

which are changed for this level of the simulation.  
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3 SIMULATION PARAMETERS 

 

The state variables – range of the vehicle and 

bearing of the vehicle – will be predicted based on 

matrices, which describes chosen system. The models are 

introduced in [1]. The dynamic system matrix has 

following form: 

 

Φ = 

[
 
 
 
 
 
1 𝑇
0 1

0 0
1 0

0 0
0 0

0 0
0 0

𝜌 0
0 1

0 0
𝑇 0

0 0
0 0

0 0
0 0

1 1
0 𝑟]

 
 
 
 
 

                           (8.) 

 

The column vector of the process noise, which is 

part of the state vector calculation, has form: 

 

𝑤 = 

[
 
 
 
 
 

0
0

𝑤𝑘−1
1

0
0

𝑤𝑘−1
2 ]

 
 
 
 
 

                                                     (9.) 

 

In given matrices (8.) and (9.), which are in the 

equation (1.), represent variable T sampling period, ρ 

correlation coefficient, w1 and w2 are parts of w defined as 

the noise with zero mean value and known covariance.  

 The measurement sensitivity matrix H has 

considering on the required values of state variables the 

following form. By changing of this form is possible to 

alternate the required outputs and their number.  

 

𝐻 =  [
1 0
0 0

0 0
0 1

0 0
0 0

]                         (10.) 

 

For the solution of (2.) is required to define the 

measurement noise column vector as follows: 

 

𝑣 =  [
𝑣𝑘

1

𝑣𝑘
2]                                                       (11.) 

 

The state vector has the following form: 

 

𝑥𝑇 = [𝑟 �̇� 𝑈𝑘
1 𝜃 �̇� 𝑈𝑘

2]                    (12.) 

 

The equation (12.) represents state vector, which 

consists of the six basic state variables. Using the specific 

form of the matrix H we obtain in the each iteration of 

algorithm the required value. The variable r represents 

range of the vehicle in discrete time and following 

variable is derivation of the range in the same time. The 

variable Uk
1 defines maneuvering correlated state noise, 

variable θ represents bearing in discrete time and 

following variable is the derivation of bearing. The last 

state variable is Uk
2 – maneuvering correlated state noise.  

After definition of all state variables and 

matrices, is required for complex prediction and 

correction to define all covariance matrices, which are 

included in the algorithm. The covariance matrix P can be 

defined in two ways. In the first easier case we expect the 

form of the covariance matrix P to be equal to matrix of 

the process noise covariance Q. In the second case, which 

is customary solution, is calculation of this matrix by 

using the Riccati equation. This approach in necessary 

number of the iterations calculates the steady values of 

the each matrix elements. This approach optimizes the 

initial behavior and the filter response. The process noise 

covariance matrix has in the main diagonal variances of 

the single input noises, another elements represents the 

bond between another elements of the noises. On the 

same principle is also based the measurement noise 

covariance matrix. The matrices are recalculated in time 

and in this simulation will be used simplification in the 

form of constant matrices R and Q.  

The forms in [1] are follows: 

 

𝑄 =  

[
 
 
 
 
 
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

𝜎1
2 0

0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 𝜎2

2]
 
 
 
 
 

                      (13.) 

 

𝑅 =  [
𝜎𝑟

2 0

0 𝜎𝜃
2]                                               (14.) 

 

The values of the variances are based on 

description of the input noises. These are defined for this 

type of the prediction as noises with zero mean value and 

specific covariance. The last matrix for the recursive 

prediction algorithm is the covariance matrix P, which is 

solved by using the Riccati equation. The form of the 

covariance matrix is [1]: 

  

𝑃 =  

[
 
 
 
 
 
 
 
 
 
 𝜎𝑟

2
𝜎𝑟

2

𝑇
𝜎𝑟

2

𝑇

2𝜎𝑟
2

𝑇2
+ 𝜎1

2

0 0
0 0

0 0
0 0

0 0
0 0

𝜎1
2 0

0 𝜎𝜃
2

0 0
𝜎𝜃

2

𝑇
0

0 0
0 0

0
𝜎𝜃

2

𝑇
0 0

2𝜎𝜃
2

𝑇2
+ 𝜎2

2 0

0 𝜎2
2]
 
 
 
 
 
 
 
 
 
 

 

(15.) 

 

The variances in main diagonals of (13.) and 

(14.) are defined in [1] as follows: 

 

𝜎𝑟
2 = (1000)2 [𝑚] 

 

𝜎𝜃
2 = (0,017)2 [𝑟𝑎𝑑] 

 

𝜎1
2 = (103/3)2 

 

𝜎2
2 = 1.3 ×  10−8 
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All of these matrices are part of the recursive 

algorithm and the result is prediction of the state vector 

(or chosen elements). 

 

 

4 PROGRAMMING AND OUTPUTS 

 

For programming is used C++ platform, where 

are defined all of the presented matrices and constants. 

The equations which define the process of prediction and 

correction are calculated by using the values, which are 

the result of equations (1.) and (2.). In these simulations 

aren´t used the real measurements, but using equations 

(1.) and (2.) are in each iteration generated values of the 

state vector elements.  

In the defined number of iterations (in this case 

200) run as initial step of the iteration generating of the 

state vector values. These values are then used in 

equations for the prediction and the correction. The 

results are estimations of the chosen state variables. For 

correct operation of the program is necessary to define 

functions for the matrix calculations and for calculation of 

the inverse matrix. According to statistical properties of 

the process and measurement noise are presented values 

of the noise vectors simulated in each step using random 

numbers. The simulation inputs are also the sampling 

period T = 1.2 s and constant value of correlation 

coefficient [1] ρ = 0.5. The initial values of the state 

vector are equal to zero. This is the result of the transition 

phenomena in beginning estimations. For processing is 

defined the output to the text file and saved results are 

then processed in the graphical software.  

 

   

Fig. 1 Measured value and estimation of the tracker range 

 

 
Fig. 2 Measured value and estimation of the tracker 

bearing 

 

 
Fig. 3 Evolution of Kalman gain for range 

 

 
Fig. 4 Evolution of Kalman gain for bearing 
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If we multiply the state vector and matrix Φ and 

then the result of this operation in general form without 

including of the process noise multiply with matrix H, the 

result is:  

 

Φ𝑥 =  

[
 
 
 
 
 
𝑟 + 𝑇�̇�
�̇� + 𝑈1

𝜌 + 𝑈1

𝜃 + 𝑇�̇�
�̇� + 𝑈2

𝑈2 + 𝑟 ]
 
 
 
 
 

                                            (16.) 

 

𝐻 ∗ Φ𝑥 =  [
1 0
0 0

0 0
0 1

0 0
0 0

]

[
 
 
 
 
 
𝑟 + 𝑇�̇�
�̇� +  𝑈1

𝜌 + 𝑈1

𝜃 + 𝑇�̇�
�̇� +  𝑈2

𝑈2 + 𝑟 ]
 
 
 
 
 

=  [
𝑟 + 𝑇�̇�
𝜃 + 𝑇�̇�

] 

(17.) 

 

Solution of (17.) is expression of the output as 

predicted state variables. If we change values in matrix H, 

this change will lead to the new output definition or new 

number of output values.   

 

 

5 CONCLUSION 
 

In this article are mentioned results of the 

Kalman filtering simulation of the chosen state variables. 

In article is used particular model of the dynamic system, 

which is used for simulation of chosen variables. The 

simulation outputs illustrated in Fig. 1 and Fig. 2 shows 

the transition phenomena in the beginning simulation. 

This phenomena in range of 0 – 50 iterations is caused by 

used approach of modelling, which is included in C++ 

program. The algorithm uses constant values of the Q and 

R matrices elements. Although is used the Riccati 

equation for calculating of the covariance matrix, there 

aren´t calculations for determination of the Kalman gain 

matrix elements, which should be used as initial for the 

algorithm. This is the main reason of the transition 

phenomena, which is also proven by Fig. 3 and Fig. 4. 

Removing of this phenomena and increasing of the 

processing accuracy can be achieved by performance 

analysis of the filer. In this case, equations (4.), (5.) and 

(7.) will be respectively recalculated before algorithm 

using initial value of matrix P, which is result of the 

Riccati equation. This process leads to initial values of the 

Kalman gain matrix, which will reduce the transition 

phenomena. Real application of this prediction algorithm 

is also based on the statistical sensor description, which is 

initial information for creating of Q and R covariance.     
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