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The topic introduces theoretical work done in a diploma thesis. It contains procedure of calculating the natural frequency of gas turbine 

compressor or turbine rotor disc. Relations for calculating the natural frequency of a disc oscillation are step by step derived therein. To calculate the 

natural frequency is used Rayleigh's energetic method and the calculation for number of nodal lines is based on the specific procedure made in the MS 
Excel spreadsheet. 
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1 INTRODUCTION 

 

In the thesis, there were analyzed the causes and 

shape oscillation disc, natural frequency and manner of 

oscillation drives. The reason for this thesis was the lack 

of literature relevant to this issue in Slovakia. 

Problems of construction and vibration of gas 

turbine engine discs is analyzed in particular depth in the 

study of aerospace engineering. The thesis could 

according to the depth of problem solving facilitate a 

comprehensive understanding of the issues and thereby 

assist in teaching and learning at the Faculty of 

Aeronautics at Technical University of Kosice. 

An important part of the engine air – gas tract is 

rotating compressor and turbine. The different types of 

engines have different design solutions and different types 

of their rotors. 

In an aircraft gas turbine is the most commonly 

used disc-drum design of compressor and turbine rotor. 

When rotating disc is stressed by centrifugal forces from 

its own weight and the weight of the blades, there are 

formed radial and tangential tensions. In addition, there is 

a turbine thermal tension from the temperature gradients. 

Loading forces and torques acting to the compressors and 

turbines have a cyclic character, causing vibration 

excitation. 

Harmonic oscillation of a disc point P with its 

own angular frequency Ω, and the number of angular lines 

m can be described using the following equation: 

 

w ≡ w (r, φ, t) = w(r) w(φ) w(t) = w(r) sin(m.φ).cos(Ω.t)

      

(1) 

 

Here w represents the instantaneous displace-

ment of point P from the equilibrium in the z direction. 

Dimensional curve w(φ) = sin m • φ, respects change of 

amplitude of displacement only, depending on the angular 

position φ, while the curve w(r) respects the change again 

only depending on the change of the radius. Curve w(r) 

have to satisfy not only the boundary conditions of the 

disc montage, but it also has to respect the appropriate 

number of nodal circles. 

 

 

2 RAYLEIGH METHOD OF DISC FREQUENCY 

CALCULATION 

 

Suppose disc undamped harmonic oscillation 

with "m" nodes and angular frequency Ω according to Eq. 

(1). Provisionally and only due to simplicity we consider 

a permanent full disc thickness (h = const.) with radius R. 

Oscillations of any disc element dm or any part of the 

entire disc can be thought of as a process accompanied by 

adequate changes of kinetic and potential energy, 

although modifying their sum. This means that when 

there is the maximal potential energy of the oscillating 

disc must be the kinetic energy zero, and vice versa. For 

this condition occurs at the maximum and zero deflection 

disc element from the equilibrium position. 

Natural frequency f of oscillating disc is then 

calculated from the condition of equality of maximal 

potential and kinetic energy as the speed and kinetic 

energy of disc vibration depend on the frequency. 

Eg the maximum kinetic energy of half a circular 

sector of the disc between two nodal diameters, ie within 

the angles φ = 0 and φ = π/2m apply: 

 

    (2) 

Where: dm= ρ h r dr d φ, 𝜗max= Ω w(r) sin m φ (3) 

Relation for maximum oscillation speed we get 

by derivation of equation (1) according to time, when 

there sin Ωt = 1 

For Kmax is then valid:  

 

      (4) 

And because: 

 

  (5) 

 

 

Where:    (6) 
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and where b = h / 2 is one half the thickness of the disc. It 

seems that for the shape curve oscillation drive w(r) it is  

K = const. 

Furthermore, we show that, like Kmax, can also be 

the maximum potential energy Umax (considered segment 

disc) to derive the following generally valid relation: 

 

      (7) 

 

For a given curve shape or the selected vibration 

disc w(r) is again Vmax = V = const. 

The condition of equality:  

 

Kmax = Umax    (8) 

 

then for searched natural angular frequency of oscillation 

disc pays: 

 

 [rad/s]      (9) 

 

Because the curve shape w(r) of disc oscillation 

is not known in advance, we need its estimate for the 

purposes of calculations. For various computational 

shaped curve w(r), we get a different, corresponding them 

calculated values of Ω. Rayleigh showed that of all the 

selected (estimated) computing curves w(r) is the closest 

one that disc oscillation curve shape, which corresponds 

to the lowest value of calculated natural frequency Ω. 

 
 

Fig. 1 Picture of the oscillation method bladed disc and the 

computer scheme 

 

The curve shape w(r) should be chosen to meet 

the boundary conditions of disc montage, including 

derivations. In terms of the mathematical expression of 

this curve it is also important to be easily derivable. For 

the selected suitable mathematically defined curve w(r) 

can be derived appropriate relation by equations (6) and 

(7), for practical engineering calculations, whereby it is 

relatively easy to determine the functional dependence of 

K(r) and U(r) and after integration also associated values 

of constants K and U. 

This computational relation will of course vary 

(for otherwise identical conditions), depending on the 

case if a disc has constant thickness or a disc has variable 

thickness. 
 

 
Fig. 2 Picture of the element of the disc bending 

 

In a case of a disc with commonly changing 

thickness this can be replaced by finite number of rings 

with thicknesses constantly or linearly varied (in the 

direction of the radius of the tapering or expanding) and 

computed precisely enough (See Fig. 1b). In this case, 

instead of equation (9) applies: 

 

 kde: ;   (10) 

 

Where “n" is the total number of disc annular 

elements and Kj, Uj are they relevant variables. 

In case of a rotating bladed disc, instead of true 

equality (10) the following relationship is valid: 

 

 kde: ; ; 

     (11) 

 

Where U is potential energy of disc without 

blades, consisting of "n" computational rings. W is the 

work of disc centrifugal forces, including the vane ring at 

the periphery (hence the index "n +1") and K is kinetic 

energy of the disc and blades – similar to the work of 

centrifugal forces. According to some theories is 

neglected the contribution of the bladed rim to the total 

potential energy of the disc. Kinetic energy and work of 

centrifugal forces of the rim are respected by so called 

fictitious (n +1) disc ring (see Fig. 1b). The outer radius 

of the ring is the same that the inner radius of the blades 
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and the inner radius of the ring is equal to the outer radius 

of the last n
th

 ring of the disc, which is located close to 

bottom part of the blade lock. The thickness of this 

fictitious ring is calculated from the condition of equal 

masses of blades (including ridges and hinges drive) with 

a mass of the ring. To overcome complicate calculation, it 

is assumed that the disc and the blade, ie (n +1) have a 

common ring (ie, mathematically equivalent) curve w(r). 

Of course there might be other, more or less accurate 

calculation assumptions, how it is possible to consider the 

mass distribution and stiffness of the blade on disc 

oscillation. 

For example, it would be more accurate. to 

replace the blade with two calculation rings: the first one 

in the hinge and the second one in the leafy part. If blades 

are bandaged on their ends, it would be more accurate to 

choose even three spare blades ring. In equation (11) for 

the calculation of W and K would instead of (n +1) was (n 

+2) and (n +3). 

From the foregoing, it is useful to derive the 

necessary relations for calculation of potential and kinetic 

energy of oscillating disc (or its parts) for commonly 

defined deformation curve w(r), whose shape can be 

changed by suitably chosen parameters. Therefore we first 

derive a functional relation K(r) and U(r) in commonly 

applicable equations (6) and (7). 

The specific procedure to calculate the natural 

frequency of the disc Ω = Ω (m) at m = const. is as 

follows: 

1. Chosing value q = qmin = const. 

2. Calculating the constant M = M (m, q) 

3. Drawing Uj and gradually Kj for j = 1,2,3, ... n. 

4. By using equation (10) is declared U and K, 

and finally Ω, where Ω = Ω (q) 

5. Repeating the calculation of Ω = Ω (q) from 

the previous point for all other values of q = const. The 

chosen range from qmin to qmax after step AQ = const. 

6. Illustration of relation Ω = Ω (q) (see Fig. 3) 

and using this to determine Ω (q) = Ω (q) = min Ω (m), 

which is considered to be searched natural disc frequency 

for a given number of nodal diameters m. 

 

 

Fig. 3 Comparison of natural frequency dependence of the 

disk exponent q, the value of m = 4 (fvl1) and m = 5 (fvl2) 

 
 

3 CONCLUSION 
 

From the results of natural frequency of 

oscillation disc calculating it can be seen that for each m 

(number of nodal lines) is found a different value of the 

exponent q, which affects the curve form of the function 

w (r). 

After a first approximation would be appropriate 

to compress calculation for different q with smaller step 

AQ = const. By this would been found accurate values for 

finding curve w(r). 

In the thesis we dealed with the basic procedure 

for calculation of natural frequency of disc vibration that 

can be developed with considering the effect of 

centrifugal forces, influences of the shape (cross-section 

of the radius), disc temperature (changed E along the 

radius), etc. 
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