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The article presents an option how to design neural networks to solve the errors of 2D vector fields sensors: magnetometers and 

accelerometers. The introduction deals with the errors of the sensor. The theory describes that gradient method was used for learning corrective 

constants. The next, modelling, presents the development of corrective constants under the ideal conditions. We assembled, the real experiment  
confirms the theory and the modelling. The utilization of neural networks was directly shown on the improved course measuring.   
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1 INTRODUCTION 

 

Neural networks for removal of multiplicative 

additive and orthogonal errors were used for calibration of 

2D sensors. Sensor performs a random plain rotation in 

homogenous magnetic field during calibration. The vector 

has to have its projection on the plain field rotation. 

Sensor errors manifest on the transfer characteristic, this 

is shown on the Fig. 1.  

 

 
Fig. 1, Transfer function of 2D sensor with additive, 

multiplicative and orthogonal error 

 

 
Fig. 2, Time dependence of x and y sensors outputs while 

harmonic rotation 

 

Additive errors cause a shift in the harmonic 

functions in line of axis y and the  multiplicative error 

causes  functions to have different values. Orthogonal 

error is manifested as a bilateral shift of functions against 

each other in the line with the axis x (Fig.2).  

 

 

 

 

2 THEORY 

 

 Designed neural networks solve the errors of 2D 

vector fields sensors. Performance of every network 

consists of two processes: learning process that serves to 

set up individual corrective coefficients and corrective 

process when the sensor measures with the learnt 

corrective coefficients. During the measuring we get 

values x
k
 and y

k
 , which create orthogonal decomposition 

of normalized vector field B  of magnetic field induction 

in plain field. Hitherto, it is evident that the value of 

projection of the vector in k step is:  
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Largeness of the projection is standard value and is equal 

to 1. Then we can define the error equation as: 

 

      ;1

;1

222 kk

kk

B

B








  (2) 

 

To get to the newly corrected values, we need to define 

the relations that correct the measured values:  
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After that, we need to find such multiplicative constants 

M, additive constants A, and orthogonal constant O which 

would converge error ε to zero. After the application of 

absolute differential to error equation we will get to the 

method for iterating the constants, to the gradient method: 
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Fig. 3, Neural network for multiplicative, additive and 

orthogonal error rejection 

 

These algorithms are iterative and represent a 

method how to remove errors from sensor so that absolute 

error is minimal. At commencing learning process, the 

scales are implicitly set to the ideal values: M = 1, A = 0 a 

O = 0.  

 

3 MODELING 

 

For testing the neural network, signals of axes x 

and y that simulated random movement of sensor in the 

plain field were created. It is a random discreet rotation 

which has even representation of the probable in the range 

of measured values. The learning process of convergent 

constants is depicted on the figures 4,5, and 6.  

 

 
Fig. 4, Learning process of multiplicative constants of x and 

y channel 

 

 
Fig. 5, Learning process of additive constants of  x and y 

channel 

 
Fig. 6, Learning process of  orthogonality constant 

 

As is seen, the tuning of individual constants 

required circa 7000 samples. Fig. 7 depicts course of error 

E2, which converges to zero. Error E1  is without 

calibration and holds in the same range.  

 
Fig. 7, Total error rejection, while learning process (discrete 

rotation) 

 

The stability and velocity of convergence is 

managed by α  and the value for this case was selected to 

be 0.1.   

  

 

4 EXPERIMENT 

 

The experiment followed after the simulation. 

MicroMag3 was chosen as magnetometer. In spite of the 

fact that this is three-axes magnetometer, it was 

functionally used as two-axes one. Constant α was set to 

0.005. Sampling frequency of the magnetometer was set 

to 170 Hz. No filters were used to remove the noise. 

Calibration took place in the laboratory with 50Hz noise 

from power lines. Figures 8, 9, and 10 depict the learning 

process of corrective constants.  

 
Fig. 8, Learning process of multiplicative constants of x and 

y channel in real experiment 
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Fig. 9, Learning process of additive constant of channel x 

and y in real experiment 

 

 
Fig. 10, Learning process of orthogonality constant in real 

experiment 

 

The processes of learning corrective constants 

from the experiment are very alike to those from 

modeling. The course of error reduction is shown in the 

fig. 11.  

 
Fig. 11, Total error rejection, while learning process in real 

experiment 

 

Error E2 presents error during the calibration 

process. As is seen, it is decreasing over time, however it 

lacks the capacity to converge to zero as reached in the 

simulation. The cause is the 50Hz noise from industrial 

network and the noise of the sensor which is strong in this 

particular type of magnetometer. Error E1 is error 

calculated from measured values of the sensor without 

any other corrections.  

 The next experiment focused on the course 

calculation. Course was calculated from the measured 

values and from the values which were corrected by 

corrective constants. Magnetometer was located   on the 

rotation platform which was consequently slewed by 5°. 
The calculated course are depicted on the fig. 12.  

 
Fig. 11, Course calculated from measured and calibrated 

data 
 

The course calculated from calibration data is 

linear while the course calculated from non-calibrated 

data is linear only weakly and in some spots it differs by 

as much as 40°.  

  

 

5 CONCLUSION 

 

  In this article we present the possibility of using 

neural networks for setting 2D sensors. Experiment 

corresponds with the modelling to great extent. This way 

of calibration considerably improves the possibility to 

measuring accurate course. The environment that would 

be more homogenous than the laboratory field and  

reduction of sensor noise might ensure better results.  
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