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MATHEMATICAL MODEL OF INVERTED PENDULUM 

WITH AIRCRAFT PROPERTIES 

Tobiáš Lazar - Peter Pástor   

The objective of this paper is to demonstrate the design of the inverted pendulum model with aircraft properties. The 

inverted pendulum is inherently unstable system and it is necessary to stabilize the pendulum  closed loop system with PID 
regulator. Regulated parameter is force applied to the pendulum and regulation parameter is deviation from vertical position θ.

The linearized model of an inverted pendulum  is used to adjust derivation and proportional coefficients of the PID regulator, 

integration parameter is zero in this case. This regulator will be also tested on nonlinear model of the inverted pendulum. 
K e y w o r d s. Inverted pendulum, thrust vectored aircraft, PD regulator 

 

1 INTRODUCTION 

Assuming, an aircraft is equipped with 

thrust vectored nozzles in low dynamic pressure 

conditions. In these conditions the aerodynamic 

forces is negligible and only moments and forces 

generated by thrust vectoring nozzle system is 

considering. Parameters of the interest are aircraft 

mass m, moment of inertia I and arm l (distance 

between CG and vectored nozzle). Selected 

parameters of simulated aircraft have following 

values [2]:  m=15180 kg; 

 I=4.2138∙105 kg m2 

 l=5.4 m 

These parameters are constant during 

simulation. The inputs is force generated by thrust 

for controlling purpose and its value is given by 

angle of deflection of the nozzle denoted φ. Angle 

and rate of deflection is limited and nozzle 

dynamic is described by following 2nd order 

transfer function [1]: 

2
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Nozzle dynamic will be replaced by step 

function and only position limit  

(±20 deg) and rate limit (60 deg/sec) will be taken 

into account. 

Time response of the inverted pendulum 

(red line) with same values m, I, l like thrust 

vectored aircraft (blue line), shows Figure 1. 

 
Figure 1. Time responses of the inverted 

pendulum and thrust vectored aircraft 

2 MATHEMATICAL MODEL OF 

INVERTED PENDULUM 

The inverted pendulum apparatus is a 

system with mass above its pivot point mounted on 

the cart. The cart can move horizontally. Depicted 

inverted pendulum in coordinate system is given in 

Figure 2. 



ACTA AVIONICA                                                                                       Volume XII (2010), Number 19 

 

ISSN 1335-9479        2                                                        Faculty of Aeronautics                                       

Technical University of Košice 

 

 
Figure 2. Inverted pendulum in coordinate 

system [3] 

The dynamic of the pendulum is 

described by following equations representing 

nonlinear model of inverted pendulum: 
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where M – mass of the cart, m – mass of the 

pendulum, b – friction of the cart, l – length to 

pendulum centre of mass, I – inertia of the 

pendulum. 

x and y are exact functions of theta and can be 

represented by their derivates in terms of theta 

derivates: 
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Substituting equations (3), (4) to 

equations (1), (2): 
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Equations (5), (6) representing mathe-

matical model of an inverted pendulum depicted 

on Figure 2. For PD regulator design it is 

necessary to linearize these equations in position 

when θ=0; where the mass of the pendulum is 

exactly above a cart pivot point and θ represents 

small deviation from this position. Let’s assume 

following simplifications [4]:  
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Linearized equations became: 
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Applying Laplace transformation, 

equations (7) and (8) have following form: 
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X(s) can be calculated from equation (10): 
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Then substituting (11) to equation (9) and  

re-arranging, the final transfer function is: 
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For similarity with aircraft assume, that 

friction coefficient b=0 and mass of the cart is 
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negligible, because its value is in relation of 

pendulum mass much smaller. Using previous 

simplifications the transfer function is: 
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General form of transfer function (13) is: 
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In this case, the parameter K and natural 

frequency of the system ω0 are given: 
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You can see the results depend only on 

ratio between constants. This is very important fact 

for further design so it is not necessary to know 

exact value of the parameters. It is possible to 

replace this system by other system with the same 

ratio between the parameters for natural frequency 

to simulate same dynamic. This idea is useful for 

practical model of inverted pendulum with aircraft 

properties implementation. The outputs parameter 

of this system will be same, only value of mass, 

inertia, arm and input force will be much smaller. 

This system is expected to utilize for practical 

control system testing. 

3 PID REGULATOR DESIGN 

It is easy way for further design apply 

transfer function in form given by equation (14). 

PD regulator for pendulum stabilization is 

described by following expression: 

 Ds P  (16) 

where P is proportional and D is derivation 

coefficient. 

Figure 3 depicts block diagram of the 

closed loop feedback control system in general. 

 
Figure 3. Closed loop system 

Closed loop transfer function has form [5]: 
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Z(s) is input to the plant and in this 

example its value is limited. This value cannot 

exceed the limitation. Use following transfer 

function to observe the input: 
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In this example θ(s) represents Y(s), X(s) 

can by replaced by U(s) and G(s) is inverted 

pendulum transfer function equation (14). H(s) 

describes PD given by (16). Final form of closed 

loop system is calculated by substituting equations 

(14) and (16) to (17): 
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Compare denominator of equation (19) 

with binomial standard form for 2nd order system. 

Parameters of PD regulator  are: 
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where ωz  is desired natural frequency of system. 

For PD regulator design, it is important to state 

gain and time of regulation. The value of angle θ 

can be calculated in t→∞: 
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For approximate calculation of time of 

regulation tr of 2nd order system utilize formula: 
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4 SIMULATION RESULT 

Selected parameters m, I, l of simulated 

aircraft were mentioned above. Substitute these 

values into equation (14). Transfer function has 

following form: 
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PD regulator for the pendulum is 

connected into feedback of closed loop system 

depicted on Figure 3. Apply equation (20) to 

calculate parameters P and D of the regulator. 

State that desired value of natural frequency is 2 

rad/sec. Calculated parameters P, D are: 

P = -461049 

D = -312133 
Assume that engines of aircraft produce 

thrust 148916 N and deflection of the vectored 

nozzle is limited to ±20 deg, so maximum value of 

thrust to control the aircraft is 50932 N [1] [2]. 

Time response on the input step function 

is on Figure 4. Apply equation (21) for angle θ 

calculation in t→∞: 
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Figure 4. θ angle time response 

Figure 5 depicts force in the input to the 

pendulum. You can see that limited value has not 

been exceeded. 

 
Figure 5. Force applied to the pendulum 

Comparison between linear model 

described by transfer function (22) and nonlinear 

model represented by equations (5), (6) is on the 

Figure 6. 

 
Figure 6. Comparision between linear and 

nonlinear model 
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5 CONCLUSION 

It is possible to apply PD regulator for 

inverted pendulum stabilization. The advantage of 

this system is relatively simply structure. Design 

of this system and PD coefficients calculation is 

also not complicated and linear transfer function 

can be utilized for design. The differences between 

linear and nonlinear model are small, final results 

correspond to the calculation and the comparison 

between these models is shown on Figure 6. 

Disadvantage is relatively small range of regulated 

angles and the fact, that out of this range the 

motion of the pendulum becomes uncontrolled.  
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